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We demonstrate that two simple noninertial motions, namely, uniformly rotat- 
ing and uniformly accelerated motions, can be described as parallel transports, 
in a space-time manifold with torsion, of the moving object's reference frame 
along its world line. On the basis of that, it is conjectured that the electromag- 
netic field tensor is really only the temporal part of the contortion tensor. The 
only disturbing feature is that the decrease of the electromagnetic/gravitational 
coupling ratio with velocity (by the factor "t) does not appear in this approach. 

1. INTRODUCTION 

The two basic assumptions of Einstein's theory of gravitation (general 
relativity theory) are as follows (see, e.g., Born, 1965, p. 350). 

1. All the properties of the gravitational field can be described by the 
non-Euclidean (or rather non-Minkowskian) metric of the four-dimen- 
sional space-time manifold (corresponding to the classical gravitational 
potential), and/or  by the Levi-Civita (torsionless, or sometimes called 
"symmetric") affine connection derived from this metric (corresponding to 
the classical gravitational force). 

2. The world lines of test particles in a gravitational field are geodesics 
(lines of extremal length) which, for the Levi-Civita connection, coincide 
with autoparallels (the straightest lines). 

As it was shown first by Einstein, Infeld, Hoffmann, and later others, 
the second hypothesis is not independent, but rather follows from 
Einstein's equations for the gravitational field. 

Immediately two questions arise: 
1. From the physical side, one looks for a way to describe geometri- 

cally other, noninertial, i.e., rotating and accelerated motionsJ 
2. From the geometrical side, one tries to find the physical meaning 
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for the torsional part of the Cartan's (sometimes referred to as "asymmet- 
ric") affine connection, which causes autoparallels to differ from the 
extremals; even in a flat (Minkowskian) space-time, autoparallels are 
"bent"  (see Gogala, 1980a). One thus tries to find what prominent physical 
lines can be identified with the most prominent geometrical lines in a 
space-time endowed with torsion. 

The aim of this paper is to demonstra te  that the world lines of test 
particles exhibiting some simple, noninertial motions, like uniformly rotat- 
ing and uniformly accelerated, can be described as autoparallels in a 
space-time with torsion. In other words, the "time direction" of an ob- 
server, associated with such a particle, remains, in a space-time with 
torsion, parallel to itself along the observer's world line. But not only that; 
the other three, space-directed vectors of the observer's tetrad are also 
moved parallel to themselves along the observer's world line, as prescribed 
by the torsion of the space-time. 

We must stress that in this treatment the space-time is assumed to be 
flat (Minkowskian). Thus, in Cartesian coordinates, all the components of 
the affine connection are expressed in terms of the components of the 
torsion only, as the Christoffel symbols are identically zero. We will 
assume, however, the validity of the equivalence principle, which includes 
the property that the covariant derivative of the metric tensor is zero (see 
von der Heyde, 1975; Gogala, 1980a). The components of the affine 
connection in Cartesian coordinates will then be 

F k l  m = Sml  a (1.1) 

where the contortion tensor 

(1.2) 

is antisymmetric in the last two indices. The equations for parallel trans- 
port of vector v, along a curve with tangent vector u, will read in the same 
coordinates (cf. Gogala, 1980a): 

VUu Um(1)k/m ~- Smkll)l)e k ----. (Out) k 3 I- UmSmkll)l)ek -----0 (1.3) 

In our case, vector u will be the timelike vector, tangent to the observer's 
world line, and vector v will be one of the four vectors of his tetrad. 

lit is sometimes claimed that accelerated motion is described by Einstein's general relativity 
theory. This is not true; the general relativity theory describes only inertial motions, albeit in 
curved space-time. Accderated motion in a strict sense, that is, caused by an interaction 
other than gravitational, e.g., electromagnetic interaction, is noninertial. 
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2. U N I F O R M L Y  R O T A T I N G  M O T I O N  

F o r  d idac t i ca l  r easons ,  the  u n i f o r m l y  r o t a t i n g  m o t i o n  a l t h o u g h  b e i n g  

m o r e  compl i ca t ed ,  wil l  be  t r ea t ed  first. W e  f ind  first  the  r e f e r ence  f r a m e  
( te t rad)  of the  r o t a t i n g  o b s e r v e r  b y  p e r f o r m i n g  a L o r e n t z  t r a n s f o r m a t i o n  
o n  the  ine r t i a l ' s  obse rve r ' s  r e fe rence  f rame.  2 

As  the  r o t a t i n g  obse rve r ' s  r e fe rence  f r a m e  is n o n i n e r t i a l ,  this t r ans fo r -  
m a t i o n  c a n  be  o n l y  i n s t a n t a n e o u s .  I n  ro t a t i ng  cy l ind r i ca l  c o o r d i n a t e s ,  the  

i n s t a n t a n e o u s  ine r t i a l  r e fe rence  f r a m e  is 

( ~ 0 0 0 ) ~r' 00' Oz (2.1) 

Th i s  f r a m e  keeps c h a n g i n g  wi th  t ime  as 

e r = cos(o0t)ex + sin(o~t)ey (2.2a) 

e a -- r [  - s in (wt )e  x + cos(cot)ey ] (2 .2b)  

T h e  m o t i o n  in  the  t h r e e - d i m e n s i o n a l  space  is  i n  the  d i r e c t i o n  ea, so o n l y  
the  vec tors  e t a n d  e 0 will  be  a f fec ted  b y  the  L o r e n t z  t r a n s f o r m a t i o n .  T h e  
vec tors  of the  r o t a t i n g  obse rve r ' s  r e fe rence  f r a m e  are  thus  

T = yet + ,/o~e 0 = y e  t -F T~0r [ -- sin(o~t)e x + cos(6ot)ey ] (2.3a)  

R = e r = cos(~0t)e x + sin(~0t)ey (2 .3b)  

0 = 3~oor2et + 3'e0 = T~0r2e, + Tr[ - sin(~0/)e~ + cos(wt)ey ] (2.3c) 

z =ez (2.3d) 

Here ,  T = (1 - to2r 2) -1 /2  (2.4) 

2We must stress here the difference between the coordinate system and the reference frame 
(or frame of reference). A set of four variables x i which uniquely labels every event in the 
space-time continuum, is a coordinate system. A reference frame is defined at every point as 
an orthonormal tetrad of one timelike and three spacelike vectors. The former is interpreted 
as the 4-velocity vector of an observer at that point, and the latter as his local Cartesian 
coordinate axes (see Irvine, 1964; Pirani, 1957). The coordinate systems and reference frames 
are completely unrelated to each other, although a unique reference frame is naturally 
associated in each point with the given coordinate system, and although one can always find 
a coordinate system associated in a particular point with a given reference frame (making 
metric Minkowskian at that point). Lorentz transformations act only on the vectors of the 
reference frame, but not on the coordinate system, which is acted upon by general 
coordinate transformations. A particularly nice, detailed explanation of this subject was 
given in a series of papers by Rodichev (1965,1967, 1968,1972, 1976). 
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This result has also been found and discussed by Strauss (1974), and is 
identical to that of Irvine (1964), who used Frenet-Serret formulas instead 
of Lorentz transformations. The frame (2.3) is, of course, also orthonormal, 
as is the inertial frame of the static observer (2.1), but with the difference 
that it is anholonomic, as already discussed by Corum (1977); this is due to 
the transformation being instantaneous, that is, only local geometrically. 
The nonzero commutators are 

[ R ,  O ]  = - 7 2 t o 2 r O ' +  2 Y  2 t o r t  ( 2 . 5 a )  

[ R, T ] = y2to2rT (2.5b) 

The space-time remains flat, as no coordinate or basis transformations can 
make a flat manifold become curved. All the discussion in the literature 
about the surface of a rotating disk being curved owing to the length 
contraction of its circumference (or rather of all the concentric circles on 
it) makes no sense; the appearance of curvature arises from neglecting the 
fact that the space-time of a rotating observer is anholonomic, in other 
words, from forgetting the last term, which is nonzero owing to (2.5), in the 
expression for the curvature tensor 

Q yuv--J" y v / u - -  yu /v  

^ x ^ m ^ x ^ m ^ x m ( 2 . 6 )  -t- F mu F yo --  F mvr y . -  r ym c u v  

We will also need the derivatives of the components of all the vectors 
(2.3) of the rotating observer's frame with respect to the Galilean basis 
vectors: 

T t / x  

T t / y  

TX/~ 

TX/y 

R X/t  

R Y / t  

O~lt 

Or/ t 

OX/y  

= y 2 t o T Y ,  T X / t  = - t o T  y 

= - y2toTX ' T Y / t ~ - t o T  x 

= ( - to/,/) sin tot cos tot, 

= ( - to/~,) sin 2 tot, 

T' /x  = ( to /V)  cos2 tot 

TY/y = (to / y)sintot costot 

= -- toR y,  

= toR x, 

-- tOO- v ' 

= ( - 1 / y) sin 2 tot, 

Otlx = (1 + T2)ytor cos tot 

Ot/y = (1 + y2)7tor sin tot 

OXl x = (-- 1 /  7 ) sin tot cos tot 

OY/y = (1/-/) sin tot cos tot 

OY/~ ----- (1 /7)  cos2 tot 

(2.7) 
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All the other  derivatives are identically zero. Here we had  to take into 
account  the fact that  y is not  constant ,  but  

"//r = y3co2r (2.8) 

We now insert the above values (2.7) into the formula  for parallel t ransport  
(1.3), and find out  what  requirements  this formula  imposes on  the compo-  
nents of  the contor t ion  tensor. Obviously,  vector  Z does not  change in any  
way, and  also none  of the o ther  three vectors depend  in any  way on the 
coordinate  z. So, all the componen t s  of the contor t ion  tensor with at least 
one index z are zero. 

For  the vector v = T, we get, for  e t = e t, 

Ttrx(Sttx)+ TtTY(Ste)+ TXT;(Sxtx)+ TYTY(Syty)+ TXTY(Sxty+ Sytx) = 0  

(2.9a) 

for  e I = ex, 

TtTt(Stx,) + TtTX(Sxx,) + TXTY(Sxxy) 

+ TYTY(Sy,,y)+ TtTY(-oo+S,~y+Syxt)--O (2.9b) 

for e I = ey, 

TtTt(Styt) + TtTY(Syyt) + TXTY(Syyx) 

q" TxZX(Sxyx) + ZtTX(6o + Sty x "at" S x y t )  ~- 0 (2.9C) 

As  these requirements must  be fulfilled for any  time t, and as the terms in 
front  of  the brackets in (2.9) each depend on t in a different way, the 
expressions in brackets must  be zero. So 

S t , x  = = S x , x  = = = s . x  = 0  

-o~+ S, xy + Sy~,=O, o~- Stxy + Sxy,=O (2.10) 

Sxy,+s.,=o 

For  the vector v-= R, we find, for  e t = et, 

TtR x(S, tx) + TtRy(Stty) + TXRY(Sxte) 

+ TYRX(Sytx)+ TXRX(Sx,x)+ TYRYSyo,=O (2.11a) 
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for e t = e x, 

for  e t --- ey, 

r ' R . ( -  ~ + s , . )  + r~R'(S~)  + r 'R'(S,~) = 0 (2.11b) 

and  aga in  

s,t~ = sto, = Sxtx= Se,y= S~.= Sy ~=O 

G~-Se,~=O 

--,o+ S,~ +,o2r~Syx,=O 

,o-- S,x~ + ,o2r2S,.,, = 0 

(because  T x @)Y = - T y 0 x )  

(because  TY O t = o~2r2Tt Oy ) 

(because  TXO t = to2rZTt@ ~) (2.14) 

W r a p p i n g  it all  together,  we conc lude  that  all  the c o m p o n e n t s  of the 
con to r t ion  tensor  a re  zero, except  

Stxy =~o (2.15) 

Reason ing  in the same  way  as above,  we f ind  

s.~= s,~= s ~ =  S~,x= Sxx~= Sy~=O 

-~o+ Stxy=O, Sxt ~ - Sytv=O (because  TXR~= - TYRY)(2.12) 

F o r  the vec tor  v =  O, we f ind,  for  e t - e t ,  

TtOX(Stt,) + T'OY(S,~) + r*o*(Sxtx)  + TYOY(Sy~) 

+ T x o y ( S , ~ ) +  TYOX(Syt~)=O (2.13a) 

for  e I ---- e x, 

Zt@)Y(--o2--~- Stxy ) .-I- ZYOt( Syxt) -~ ZtOt( atx,) ..I- ZY~Y( ayx),) 

+ r~o~(Sx~)+ r~o'(s~x,)=o (2.13b) 

for e t = ey, 

T'OX(to+ S, yx)+ TxOt(Sxyt)+ T'Ot(Styt)+ T*OX(Sxyx) 

+ TY~T'(Syyx)+ TYOt(Syyt)=O (2.13c) 

r,RX(~+ S, . )+ rXRx(S.x)+~YRY(S.x)=O (2.11c) 
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The only known field, which is homogeneous and which can make a 
particle go around in a circle, is the magnetic field; so we can identify, up 
to the factor eo /m  o, 

Stxy = - B z = - F~y (2.16) 

The minus sign is caused by the fact that the magnetic field in the negative 
direction z causes the rotation to be counterclockwise. 

We know from experience that in reality ~ decreases with higher 
velocities and constant magnetic field. It appears that magnetic field is 
reduced by a factor ~/, if the coupling is assumed to be constant. As the 
field obviously cannot be reduced, just because some particle started to 
move faster, it follows that either the coupling between the charge and the 
magnetic field decreases with velocity, or the coupling between the mass 
and the surrounding metric field of space-time increases with velocity. 

3. UNIFORMLY ACCELERATED MOTION 

We consider now a uniformly accelerated observer, i.e., an observer 
performing hyperbolic motion. His world line is described (see Misner, 
Thorne, and Wheeler, 1973, equation 6.5) by 

t = ( 1 / a ) s i n h a r ,  z = ( 1 / a ) c o s h a z  (3.1) 

Here a is his acceleration, and ~- is his proper time, 

1 z + t  
--- ~ ln--z_t (3.2) 

and 
3/= cosh a~-, fly = sinh a~" (3.3) 

The reference frame of the accelerated observer is expressed in terms of 
the reference frame of an inertial observer, 

(OOt, Ox'O Oy'O azO) = (e' 'ex'ey'e~) (3.4) 

by (see Misner et al., 1973, equation 6.6) 

T = cosh(a'r)e t + sinh(a~-)e z = aze, + atez (3.5a) 

X --e x, Y f e  e (3.5b) 

Z = sinh(a~-)e t + cosh(a~-)e~ = ate t + aze~ (3.5c) 
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The reference frame of the accelerated observer is, of  course, still 
metric, and, unlike the previous case, also holonomic:  

IT,  Z ]  = 0  (3.6) 

The derivatives of the componen t s  of the vectors of the accelerated 
observer 's  reference frame are 

Tt/~ = T*/t = Z t / t  = Z~/z  = a (3.7) 

We again insert all these values into equat ion (1.3), and find the 
condit ions on the components  of  the contor t ion tensor. Obviously, now all 
the components  with at least one  index x or y will be zero. 

For  v = T, we get, for e t = et, 

- T ' r " S , , ,  + r~(a+ r ' s , ~ , ) = 0  

for e I ---- e z, 

T ' ( a +  T'S,~,)+ T ' T ' S , , , = O  

and  for v = Z, we get, for e l = e t, 

for e l ----- e z, 

(3.8a) 

(3.8b) 

TtZtStzt  + TZ(a + ZtSzzt)  = 0  (3.9b) 

Only  one of these equations is really independent,  because we are 
finally left with the following: 

f rom (3.8a) and (3.9b), 

a2t(1 - zS,, ,  - tS~u) = 0  (3.10a) 

and  f rom (3.8b) and  (3.9a), 

a2z(1 -- zS,~ - tSzu) = 0 (3.10b) 

The situation is now less straightforward than before. For  t = 0, it is 

easy: 

1 
Stt~(t =0 )  = z ( t  = 0-------~ = a (3.11) 

T ' (a  - Z~S.~)  - T~Z~S~t~ -- 0 (3.9a) 
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and S~t ~ is undetermined. Obviously, the torsion of the space-time cannot 
depend on the motion of a particle in it. We must therefore assume that 
S~ t~ is zero at all times, and then 

1 a a 
S , z -  - - - -  (3.12) 

z coshm" 7 

Thus, for an accelerated observer, the contortion of the manifold, in which 
the this observer moves his reference frame parallel to itself along his 
world line, again appears reduced by the factor ~,. As the electric field is 
the only known field which can accelerate a particle, and which also 
appears reduced by the factor 7, we can identify 

S t t z = E z  = - F t z  (3.13) 

4. DISCUSSION 

It must be remarked that both the above results are not entirely new. 
Rogozhin (1971) obtained the same results, using the language of group 
deformations; he did not use the contortion tensor, but expressed his 
results in terms of the torsion tensor components. As this author is not 
familiar with the language of group deformations, he was not able to 
determine whether Rogozhin had found also that the space-directed vec- 
tors of the noninertial observer's reference frame move parallel to them- 
selves along his world line, or only that the world lines are autoparallels in 
a space-time with torsion. 

We found that the contortion of space-time can describe simple 
noninertial motions as parallel transport of the comoving observer's refer- 
ence frame along his world line. The contortion tensor takes care of 
correctly rotating not only the timelike velocity vector but also all the other 
three spacelike vectors of the moving body's reference frame. 

We observe that there is an analogy between the noninertial motion, 
caused by the electromagnetic field, and the motion in the gravitational 
field. In both cases we have rotation of the orthonormal axes of the 
moving observer's reference frame when they are transported parallel 
along his world line. The geometrical cause of these rotations is, however, 
different in both cases. In the former case, the cause is contortion of 
space-time, and in the latter case the cause is Riemannian structure of 
space-time which, in the local anholonomic basis of the moving observer, 
finds its expression in the Ricci rotation coefficients (for a more detailed 
discussion about these two rotations see Hehl et al., 1976, p. 398, and 
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Goga la ,  1980a). I t  is a p p a r e n t l y  this la t ter  ro ta t ion ,  a n d  no t  ro ta t ion  due  to 
real  accelera t ion,  which  was t r ea ted  b y  Misner ,  Thorne ,  and  Whee le r  
(1973, Sect ion 13.6). 

W e  also showed tha t  we can  ident i fy  some c o m p o n e n t s  of the  contor -  
t ion tensor  with the  c o m p o n e n t s  of  the e lec t romagne t i c  field. The  on ly  
d i s tu rb ing  feature  is the fac tor  3', which  makes  the  f ield appea r  r e duc e d  at  
h igher  velocity.  A poss ib le  e x p l a n a t i o n  for this d i s c repancy  will be  given in 
ano the r  pape r  (Goga la ,  1980b), which  will also dea l  with ex tend ing  the 
above  results  to ob t a in  a un i f ied  f ie ld theory,  based  on  the con to r t i on  
tensor  of the space- t ime mani fo ld .  
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